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Abstract
We compare different scenarios for dendritic melting of alloys with respect to the front
propagation velocity. In contrast to conventional dendritic growth, selection can here be also
due to the presence of a grain boundary or coherence strains, and the propagation speed is
higher. The most favorable situation is partial melting, where two parabolic fronts, one melting
and one solidifying interface, are moving together, since the process is then determined by
diffusion in the thin liquid layer. There, and also in phase field simulations of melting in
peritectic and eutectic systems, we observe a rotation of the triple junction relative to the growth
direction. Finally, we discuss the role of elastic effects due to density and structural differences
on solid-state phase transformations, and we find that they significantly alter the selection
principles. In particular, we obtain free dendritic growth even with isotropic surface tension.
This is investigated by Green’s function methods and a phase field approach for growth in a
channel and illustrated for the formation of a twin phase.

1. Introduction

The kinetics of diffusion-limited phase transitions is of
central interest in the vast field of materials science, which
can lead to surprising dynamical behavior. In particular,
solidification processes have been studied extensively during
the past decades both from an experimental and a theoretical
point of view, which has led to a thorough understanding
of many aspects of these also technologically important
transformations.

Based on the initial observation that a slightly undercooled
liquid cannot solidify with constant velocity as a planar front,
since the released latent heat or rejected impurities from
the propagating solid cannot be efficiently transported away
by diffusion, Ivantsov made the surprising discovery that a
parabolic front in principle forms a steady-state solution of
the problem [1]. This prediction was in agreement with
experimental observations where a constant transformation
rate can be found, and polished micrograph sections showed
‘dendritic’ patterns with tips similar to the Ivantsov parabola.

However, in this first solution the effect of surface tension
was neglected, and a generalization was far from being
straightforward. Also, the theory predicted only a one-
parameter family of solutions, which determines only the
Peclet number, essentially the product of the dendrite tip radius
and its growth speed, as a function of the undercooling, but
does not fix each of these observables separately; this is in
contrast to experimental findings, which suggested a well-
selected propagation speed and scale of the patterns. It took
a long time to finally understand that surface tension, and
in particular its anisotropy, plays a central role in dendritic
growth, see for example [2, 3]. In particular, it was found
that with purely isotropic surface tension dendritic solutions
do not even exist, and instead so-called doublon structures
emerge [4, 5]. Since then, the concept of dendritic growth
and the notion of surface tension anisotropy are intimately tied
together.

Conceptually, many other processes in materials science
can be controlled by bulk diffusion, and it is therefore not
surprising that similar concepts for theoretical modeling can
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be applied. One example is the melting of an overheated solid,
where also the propagation of parabolic melt fronts is possible;
this has also been observed experimentally, see, e.g., [6] and
references therein. A typical difference between solidification
and melting is, however, that it is usually much easier to
undercool a liquid than to overheat a solid. Similarly, even
for solid-state transformations where dendrite-like patterns can
grow, such as, for example, in Widmanstaetten structures, the
analogy with solidification has been known for a long time;
it has recently been reviewed in [7]. It is therefore natural
to believe that also in these processes aspects of microscopic
solvability theory, and in particular surface tension anisotropy,
should play an important role.

It is a major goal of the present paper to demonstrate that,
in particular, during the latter processes very different selection
mechanisms than surface tension anisotropy can become
dominant, which sheds new light on selection principles in
diffusion-limited growth. We therefore discuss here several
different processes to emphasize the variety of selection
mechanisms and to compare them to each other.

For melting processes the presence of heterogeneities in
the mother solid phase can lead to dramatic changes of the
morphology. Starting from the nucleation regime, it is usually
favorable for a new phase to appear at an interface or a grain
boundary, since this is energetically the most favorable location
and thus the nucleation barrier is minimized. The emergence
of triple junctions is therefore a natural consequence, and
it can lead to substantial changes of the growth kinetics as
well. In particular, it has been shown recently [8] that the
presence of a triple junction at the tip of the melting zone leads
to an entirely different selection mechanism, since the triple
junction produces a very strong perturbation of the liquid–
solid interfaces, and weak anisotropy effects can be neglected.
One feature is that, on the small scales that appear here, mass
transport can also take place efficiently along grain boundaries,
especially since diffusion within the adjacent solid phases is
usually slow. Another aspect is that, especially for melting
between two grains of the same material, elastic effects can
become important, since the short diffusion length in the solid
can lead to strong concentration gradients in propagating solid–
liquid interfaces due to the impurity pile-up in the solid phases.

In the case of solid–solid transformations the new
ingredient in the selection theory is the elastic field [9]. In
this case, dendritic patterns are also selected even without
anisotropy of the surface energy required by classical dendritic
growth theory. Although the elastic effects also introduce an
‘effective anisotropy’, the physics and structure of selection
theory for the two mechanisms, anisotropy of surface energy
and elastic effects, are fundamentally different. Moreover,
elastic effects lead to a much more robust selection mechanism
compared to tiny effects of anisotropy of surface energy.

To shed light on these different selection mechanisms
in a comparative manner, this paper is organized as follows:
section 2 reviews recent findings concerning the propagation
of melt fronts in dilute binary alloys, emphasizing the role of
grain boundaries and coherence stresses, which can serve as
an effective driving force. Here, the focus is on analytical
scaling relations to understand the efficiency of the different

Figure 1. Schematic representation of the phase diagram. The solid
is quenched into the two-phase region and starts to melt.

scenarios. One element, a rotation of the triple junction
due to grain boundary diffusion that appears as a symmetry-
breaking process, is similarly observed in peritectic and
eutectic systems, see section 3. In contrast to the preceding
section, where even in the presence of a grain boundary the two
adjacent grains are assumed to belong to the same solid phase,
the melt phase appears here between two different phases with
unequal equilibrium concentrations. Here, we will highlight
results from phase field simulations. Finally, structural
transformations and density differences are another important
source for elastic stresses during solid-state transformations,
and to date their influence on the growth kinetics in dendrite-
like solid-state transformations is largely unexplored from a
theoretical point of view; they will be investigated in section 4.

The overall aim of the present paper is to summarize our
recent results on heterogeneous systems and to put them into a
more global context, with a particular focus on new selection
mechanisms in dendrite-like growth.

2. Dendritic melting of alloys

The theory of dendritic growth led to an enormous success
in the understanding of solidification patterns in many pure
materials and alloys; this triggered many theoretical, numerical
and experimental investigations. From a fundamental point
of view, the reverse process of diffusion-limited melting could
follow similar principles, but it immediately turns out that this
process is not very favorable, at least in the case of alloys:
the propagation of a dendrite-like melt front would require
the diffusive transport of impurities in the surrounding solid
phase and therefore this process is significantly slower than
dendritic solidification. We could imagine an initially solid
binary system that is quenched into the miscibility gap, where
the phase separation process starts (see figure 1). The theory
of dendritic growth then predicts a scaling of the steady-state
velocity of the propagating parabolic front (see figure 2(a))
according to [10]

V ∼ D2
s �

4

Dd0
α7/4, (1)
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Figure 2. Schematic representation of the different melting processes: (a) dendritic melting with only one front. (b) Dendritic melting along a
grain boundary. (c) Liquid film migration leads to the appearance of two confocal parabolic fronts. The first one is a melting, the second a
solidification front. (d) Partial melting along a grain boundary. (e) Liquid film migration along a grain boundary.

where � = (c0 − cS)/(cL − cS) is the dimensionless
driving force with cL and cS being the liquidus and solidus
concentrations as depicted in the equilibrium phase diagram
figure 1. The diffusion coefficient in the solid Ds is much
smaller than the corresponding value in the melt and Ds �
D; d0 denotes the chemical capillarity length. Notice that
the growth velocity is selected by the anisotropy of surface
tension, which is expressed here through the small parameter
α. We note that the process would be significantly faster in
pure materials, where the phase transition is induced by an
overheating of the solid, since heat diffusion in solid and liquid
(neglecting convection) is basically equally fast.

It is an important observation that for melting along a
grain boundary (see figure 2(b)) the selection is controlled
by the finite dihedral angles at the triple junction, which
is a much stronger selection mechanism than anisotropy
effects [8]. In particular, dendritic melting is even possible for
purely isotropic surface tension, where otherwise only doublon
patterns would appear. The propagation velocity

V ∼ D2
s �

4

Dd0
(2)

is therefore significantly higher, as the anisotropy factor α does
not appear, but nevertheless the process is still controlled by the
slow diffusion in the solid phase.

There is, however, another possible kinetic path towards
equilibrium that is controlled only by diffusion in the liquid
phase, which is related to the phenomenon of liquid film
migration (LFM). The early observations of liquid film
migration have been made during sintering in the presence of
a liquid phase [11] or during partial melting of alloys [12, 13].

In LFM, one crystal is melting and another one is solidifying.
Both solid–liquid interfaces move together with the same
velocity [14], as depicted in figure 2(c). Typically, the
characteristic velocity of atomic kinetics at the interfaces is
much larger than the migration velocity; hence both solids
should be locally in thermodynamic equilibrium with the
liquid phase at the interfaces. On the other hand, these local
equilibrium states should be different for the two interfaces
to provide the driving force for the process. It is well
accepted [13, 15] that the difference of the equilibrium
states at the melting and solidification fronts is due to the
coherence strain energy, which is important only at the melting
front because of the sharp concentration profile ahead of the
moving melting front. The solute atoms diffuse ahead of the
moving film and the coherence strain energy in such a frontal
diffusion zone arises from the solute misfit. Consequently,
the equilibrium liquid composition at the melting front, which
depends on the coherence strain energy and on the curvature of
the front, differs from the liquid composition at the unstressed
and curved solidification front. This leads to the necessary
gradient of the concentration across the liquid film and the
process is controlled by the diffusion in the film.

Thus, a theoretical description of LFM requires the
solution of a free boundary problem for two combined moving
solid–liquid interfaces with a liquid film in between. This was
done in [16] and it was found that two confocal parabolic
fronts can move together with the same velocity. There,
however, capillary, kinetic and crystallographic effects at the
interfaces were neglected. Similarly to conventional dendritic
growth, only the Peclet numbers of the two parabolas were
found within this approximation, but the steady-state velocity

3
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remained undetermined at that stage. Following concepts of
solvability theory (see, for example, [2, 3, 17]), capillarity is a
singular perturbation and the anisotropy of the surface energy
is a prerequisite for the existence of the solution in this theory.
In [14] we extended the selection theory for the process of
liquid film migration where the strong diffusion interaction
between melting and solidification fronts plays a crucial role.
We found that the propagation velocity scales as

V ∼ Db2�3

d0
α5/4, � � α1/2, (3)

V ∼ Db2�2

d0
α7/4, � � α1/2, (4)

where b is the dimensionless constant which describes the
coherence strain energy [15].

The presence of a grain boundary can again have a
substantial influence on the melting kinetics. Energetically, the
grain boundary is the most favorable location for nucleation
of the melt, which can subsequently grow as depicted in
figure 2(d) with spontaneously broken symmetry; this situation
is analyzed in detail in [18]. Again, the presence of the triple
junction in this geometry drastically changes the structure of
the theory and leads to a very strong perturbation of the solid–
liquid interface; the anisotropy of surface tension does not play
an important role in such processes [8, 19]. We emphasize
that the triple junction is rotated together with the entire
structure. This is possible due to diffusion along the grain
boundary, which therefore deforms. The problem was solved
in the lubrication approximation which allows us to reduce the
originally nonlocal problem to a local and analytically tractable
problem. For small driving forces � and for not too small
angles, �/ϕ � 1, the steady-state velocity of this process
scales as [18]

V ∼ Db2�3

d0
, (5)

thus, one can use the scaling given by equation (3), formally
setting α ∼ 1 [8]. We note that the velocities of different
processes increase from equations (1) to (5). From the
preceding results we can speculate that the velocity of the LFM
growth mode with a triple junction, as sketched in figure 2(e),
should also scale according to equation (5), but a detailed
investigation is beyond the scope of the present paper.

3. Melting along inter-phase boundaries in peritectic
and eutectic systems

As a more complicated example that still shows similar
elements as in the cases mentioned above, we investigate
here the melting along a solid–solid interface in a peritectic
and a eutectic system as depicted in figure 3. Instead of a
boundary between grains of the same phase, the melting is here
initiated between the two solid phases γ and δ slightly above
the peritectic or eutectic temperature. This melting has been
studied theoretically in both cases in [20].

In peritectic melting and eutectic melting along the solid–
solid interface, the driving force is provided by the difference
between the equilibrium concentration of the liquid (L) cLγ at

Figure 3. Left: melting of a peritectic alloy along the solid–solid
interface (γ /δ interface). The solid peritectic phase γ (white) melts
and the solid primary phase δ (black) solidifies (the liquid phase L is
shown in gray). The arrow indicates the direction of propagation.
Right: melting of a eutectic alloy along the solid–solid interface. In
this case, both solid phases γ and δ melt.

the γ /L interface and cLδ at the δ/L interface. In the growing
liquid phase, fast diffusion provides an efficient mechanism for
the process to take place. At the triple junction, the steady-
state solution for the diffusion field in the liquid requires a
rotation of the whole structure, and the solid–solid interface
then adopts an angle with respect to the growth direction. This
angle can be calculated within a lubrication approximation
and its value depends only on the concentration jumps (see
figure 4 for schematic phase diagrams of peritectic and eutectic
alloys) at the solid–liquid interfaces, �cγ = cP(E) − cγ and
�cδ = cP(E) − cδ, and on the contact angles at the triple
junction. Moreover, this rotation of the solid–solid interface
at the triple junction is used as a boundary condition for the
problem of diffusion along the γ /δ interface, which allows us
to calculate a profile that is asymptotically aligned with the
propagation direction. Far behind the triple junction, the solid–
liquid interfaces are parabolic.

According to the peritectic phase diagram, the concentra-
tion jumps at the solid–liquid interfaces �cγ and �cδ are of
the same sign. The consequence is that, behind the triple junc-
tion, the γ phase melts and the δ phase solidifies, leading to
the migration of the liquid film. This process is close to the
partial melting along a grain boundary (figure 2(d)) where the
driving force is due to elastic interactions in the melting grain.
In the eutectic system, the situation is different: the concen-
tration jumps at the solid–liquid interfaces are of opposite sign
and both solid phases γ and δ melt. In this sense, this pro-
cess is close to the dendritic melting along a grain boundary
(figure 2(b)), but it is controlled by the diffusion in the liquid.

In figure 3 typical patterns obtained from phase field
simulations of the melting of peritectic alloys (left) and
eutectic alloys (right) along the γ /δ interface are presented.
Phase field methods have been widely applied to peritectic
and eutectic systems. Indeed, this is an efficient tool to
model solidification microstructures (for a review see, for
example, [21]). For peritectic and eutectic systems, the phase
field method has proven its efficiency to reproduce complex
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Figure 4. Top: schematic peritectic phase diagram. The dashed lines
are the metastable extension of the (γ + L) two-phase region. The
dotted line corresponds to the operating temperature above the
peritectic temperature TP. Bottom: schematic eutectic phase diagram.
The light line corresponds to the operating temperature above the
eutectic temperature TE.

solidification microstructures [22, 23]. Here, three phase fields
are defined [24, 25]: pγ , pδ and pL (pi = 1 in the phase i and
0 otherwise); their sum is equal to 1. The underlying model
used here was developed by Folch and Plapp [26] to study the
directional solidification of eutectic alloys. The phase fields,
which are non-conserved order parameters, obey a relaxation
equation and the concentration obeys a diffusion equation (we
refer to equations (4.1) and (4.2) in [26] for explicit formulae).
The diffusion coefficient is proportional to the liquid phase
field pL and no diffusion is thus present in the solid phases.
For simplicity, the surface tensions are equal for all interfaces,
and they divide the triple junction into three sectors with equal
angles.

The presented patterns in figure 3 are close to the
schematic pictures discussed in [20]. In particular, one can
observe the rotation of the γ /δ interface in the vicinity of the
triple junction in the peritectic system (left panel of figure 3).
We note that the phase field model literally only includes bulk
diffusion in the liquid phase, but in the region of the triple
junction there is a remaining effective surface diffusion taking
place on the scale of the phase field interface thickness, since
the diffusion coefficient varies smoothly there. This allows
the γ /δ interface to adopt an angle with respect to the growth
direction, on a scale that is directly related to the interface
thickness; this is qualitatively similar to [20], where it is shown
that the scale on which the γ /δ is reoriented depends on the
solid–solid interface diffusivity.

Figure 5. Dimensionless steady-state velocity V d0/D versus
dimensionless driving force �. On this logarithmic plot, the slope is
close to 2, which is the analytically predicted value.

In the eutectic system (right panel of figure 3), the rotation
of the triple junction is less pronounced. However, the pattern
is clearly asymmetric. This is due to the phase diagram used
in this simulation. When �cγ /�cδ = −1 and for equal
surface tensions, the γ /δ interface is a symmetry axis of the
melting process and becomes straight (in contrast, the rotation
is always present in the peritectic system). In figure 3, we
have �cγ /�cδ = −3, and therefore the pattern is asymmetric.
However, the asymmetry of the phase diagram is too weak for
the reorientation of the γ /δ interface to be visible.

Finally, we have investigated the dependence of the
steady-state velocity on the dimensionless driving force � =
(cLγ − cLδ)/(cγ − cδ) for the eutectic melting along the solid–
solid interface. The concentrations used for the normalization
of the driving force cγ and cδ are the solid concentrations at the
eutectic temperature. The driving force � is the magnitude of
the deviation from eutectic equilibrium where cLγ = cLδ = cE.
Here, a linear dependence of the equilibrium concentrations
on temperature is assumed. Furthermore, the concentration
jumps �cγ and �cδ are taken independent of the temperature
(parallel liquidus and solidus lines) with �cγ /�cδ = −1.
Finally, the liquidus and solidus slopes are assumed to be
opposite for γ and δ, which makes the phase diagram
completely symmetric with respect to cE. In figure 5, the
dimensionless steady-state velocity V d0/D is plotted versus
the dimensionless driving force � on a logarithmic scale, with
V being the velocity, d0 is the average of capillary lengths
for liquid–solid interfaces and D is the diffusion coefficient
in the liquid phase. The observed slope is close to 2, which
is the analytically expected value from [20]. Thus we have a
good agreement between phase field simulations and analytical
results obtained within a lubrication approximation.

4. Solid–solid transformations

There are many parallels between solid-state transformations
and solidification or melting processes; in particular, the
limiting case for purely diffusion-limited growth is equally
applicable to both types of transitions [7]. Under many
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circumstances, however, elastic effects can become crucial in
solid-state transformations and their relevance for the growth
kinetics will be discussed in this section.

Historically, solvability theory has been very successful
in predicting certain properties of dendritic growth and a
number of related phenomena (see, for example, [2, 3, 17, 27]),
and the purpose is here to shed light on the influence of
structural changes and density differences, which provoke
elastic stresses, on dendritic growth in solids controlled by heat
diffusion.

First, we will employ Green’s function methods to
eliminate both the thermal and elastic fields, which
significantly simplifies the problem, and we obtain, as in the
classical dendritic growth theory, a single integro-differential
equation for the steady-state shape of the interface which takes
into account elastic effects. Later, we also present results from
phase field simulations. We investigate here only isotropic
elasticity and surface tension in the framework of symmetrical
models; this is not only a simplification of the problem (in
particular since faceting can be pronounced in solid–solid
transformations [7]) but also emphasizes that the selection
behavior is significantly altered in comparison to classical
dendritic growth, because we obtain steady-state (dendritic)
solutions even without the anisotropy of surface tension, which
is a major result of the present investigations. Also, we restrict
our analysis here to pure materials; many results can directly be
interpreted also in the framework of alloys, but we focus here
on diffusion-limited growth with equal (thermal) diffusivity in
all solid phases; for the sake of clarity we will therefore use the
nomenclature of heat instead of impurity diffusion.

4.1. Thermodynamics of the model

Let us consider the growth of a new β phase (low temperature
phase) inside a mother α phase. We denote the characteristic
lattice strain (also known as the stress-free strain tensor),
associated with the phase transition, by ε0

ik . The free energy
density in the initial α-phase is

Fα = F0
α (T ) + E

2(1 + ν)

(
ν

1 − 2ν
ε2

ii + ε2
ik

)
, (6)

where F0
α (T ) is the free energy density without elastic effects,

which depends only on the temperature T , εik are the
components of the strain tensor, and E and ν are the elastic
modulus and Poisson ratio, respectively. The free energy
density of the growing β phase is given by

Fβ = F0
β (T ) + E

2(1 + ν)

×
(

ν

1 − 2ν
(εi i − ε0

ii )
2 + (εik − ε0

ik)
2

)
. (7)

Here, we neglect the difference between the elastic coefficients
in the two phases. We also assume that the elastic effects are
small, i.e. ε0

ik � 1. Since in our description the reference state
for both phases is the undeformed initial phase, the coherence
condition at the interface is u(α)

i = u(β)

i , where ui is the
displacement vector. Mechanical equilibrium at the interface
demands σ (α)

nn = σ
(β)
nn and σ (α)

nτ = σ
(β)
nτ , σ (α)

ns = σ
(β)
ns . Here,

the indices n and τ , s denote the normal and two tangential
directions with respect to the interface. In the general case
of curved interfaces, the surface energy γ has also to be
incorporated, and the phase equilibrium condition for each
interface point in the case of isotropic surface energy is

F̃α − F̃β − γ κ = 0, (8)

where κ is the local curvature of the interface. The coherence
constraint implies the appearance of a new potential, F̃ =
F −σnnεnn − 2σnτ εnτ − 2σnsεns , which is conceptually related
to the Legendre transformation between the free energy and the
Gibbs free energy in classical thermodynamics [28]. Notice
that elastic stresses arise here only due to internal interfaces
between α and β , and the strain field can be written as an
integral along the interface in the spirit of Green’s function
method.

4.2. Diffusion-limited growth

We introduce the dimensionless temperature field w = C(T −
T∞)/L, where L is the latent heat, C is heat capacity and T∞ is
the temperature in the α phase far away from the interface. The
temperature field w obeys the following heat diffusion equation
and boundary conditions at the α/β interface:

Dt∇2w = ∂w/∂ t, (9)

Vn = Dtn · (∇wβ |int − ∇wα|int), (10)

w|int = � − d0κ + TeqCδ F̃el/L2, (11)

where d0 = γ TeqC/L2 is the capillarity length, Dt is
the thermal diffusion constant and Teq is the equilibrium
temperature for the flat interface without elastic effects, i.e. it
is determined by the condition F0

α (Teq) = F0
β (Teq). We also

introduce the dimensionless undercooling � = C(Teq−T∞)/L
and the elastic energy difference δ F̃el = F̃α − F̃β − F0

α + F0
β .

The thermal field can be eliminated by using Green’s function
techniques (see, for example, [29]), and consequently together
with a proper Green’s tensor Gik(r, r′) for the elastic field, one
can write a single integro-differential equation for the shape of
the solid–solid interface. For details, we refer to [9].

4.3. Shear transitions in free growth

Let us now consider the simple type of transition in hexagonal
crystals involving shear strain, where the symmetry is lowered
from C6 to C2, and the transformation strain appears in
the basic plane. Let the principal axis C6 be oriented in
the z direction. These kinds of hexagonal to orthorhombic
transformations have been discussed, for example, by Wen et al
[30–33]. They developed a phase field model in the spirit of
Khachaturyan [34] and found experimental evidence for the
patterns predicted by their phase field simulation results for
microstructures in Ti–Al–Nb systems.

Although the general approach presented above is valid
also in more general three-dimensional cases, we assume from
now on that the system obeys translational invariance in the
z direction, and thus it is effectively two-dimensional. By a

6
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Figure 6. Stability parameter σ ∗ versus �el/p for two values of φ:
the dashed line corresponds to φ = 0 and the solid line corresponds
to φ = π/6. The inset shows numerical results for the tip shapes of
the corresponding two different bicrystals.

proper choice of the crystal orientation around the main axis
in the initial phase, we obtain the new phase in three possible
states. In particular, we consider here only the case of the
following non-vanishing components of the strain tensor ε0

ik :

ε0
xx = −ε0

yy = ε/2, ε0
xy = ∓ε

√
3/2, (12)

which can appear here in two ‘twinned’ orientations. Because
the elasticity of hexagonal crystals is axisymmetric in the
harmonic approximation and ε0

i z = εi z = 0, we can use the
isotropic theory of elasticity, i.e. the expressions ((6) and (7))
for the free energy. The moduli of the effective isotropic
elasticity can then be expressed in terms of the elastic constants
of the original hexagonal crystal. Eliminating the thermal field,
we obtain the steady-state equation for the shape of the solid–
solid interface [9]. In the co-moving frame of reference, this
equation is

� − d0κ

R
+ TeqCδ F̃el

L2

= p

π

∫
dx ′ exp[−p(y(x) − y(x ′))]K0(pη), (13)

where η = [(x − x ′)2 + (y(x) − y(x ′))2] 1
2 , K0 is the modified

Bessel function of third kind in zeroth order and p = V R/2Dt

is the Peclet number, with R being the tip radius of the
asymptotic Ivantsov parabola.

The mismatch between the phases induces an elastic
hysteresis, which motivates the definition of a shifted
undercooling:

�̃ = � − �el, �el = TeqC Eε2/8(1 − ν2)L2. (14)

The dimensionless parameter �el describes the strength of the
elastic effects. The relation between this shifted undercooling
�̃ and the Peclet number is given by the two-dimensional
Ivantsov formula [1], �̃ = √

pπ exp(p)erfc(
√

p).
Notice that, without elastic effects, this problem is

equivalent to the classical dendritic growth problem with
isotropic surface tension. The latter does not have a solution

Figure 7. Geometrical set-up of a bicrystal growing with a velocity
V in a finite channel of width W . The interface contours are indicated
by the solid lines. Initially, the metastable phase α is undercooled
and has the dimensionless temperature w = 0. Asymptotically far
behind the tip, where the interface does not move any more due to
the thermal insulation, the asymptotic fraction λ of the new phase
and the constant temperature w−∞ of the tail region can be measured.
The α/β and α/β ′ interface contour and the temperature field
(illustrated by the grayscaling) are obtained by phase field
simulations. For the considered case γb � γ we have φ = 0 here.

with kink-free dendrite tips [3, 35]. For example, Meiron [35]
calculated the tip kink angle φ as a function of the ‘stability
parameter’ σ = d0/pR for several values of the Peclet number
with isotropic surface tension numerically and found that φ is
negative for any positive value of σ .

Now, we discuss the numerical results obtained by the
solution of equation (13) in the spirit of [35]. First, we point
out that, for the investigated case of shear transformations,
the new phase appears as a bicrystal with the two opposite
orientations, as depicted in figure 7. The presence of the twin
cancels a macroscopic shear strain far behind the tip, which
would otherwise be thermodynamically unfavorable. The twin
boundary energy is denoted by γb, and together with the α/β
grain boundary energy it determines the tip angle φ, which is
defined in the inset of figure 6. In the important regime of small
Peclet numbers, the eigenvalue σ = σ ∗(φ,�el, p) depends
only on the ratio �el/p for a fixed angle φ. While the strength
of the elastic effects is assumed to be small, �el � 1, the
control parameter �el/p can be varied in a wide range in the
limit of small p. The eigenvalue σ ∗ as a function of �el/p
for two values of the angle, φ = 0 and π/6, is shown in
figure 6. The situation with φ ≈ 0 is realized if γb � γ , and
formally it corresponds also to conventional dendritic growth
with a smooth tip, but here with selection due to elasticity. The
other case, φ ≈ π/6, corresponds to γb ≈ γ . The Poisson ratio
is here fixed to ν = 1/3.

The most remarkable feature of these results is that we do
find dendritic solutions even for isotropic surface tension in
the presence of the elastic effects. In this sense, the elastic
effects serve as a new selection mechanism. We note that
σ ∗ becomes large for large values of �el/p, while in the
classical dendritic growth σ ∗ is always small, being controlled
by tiny anisotropy effects, see also section 2. Thus, the growth
velocity, V = 2Dtσ

∗ p2/d0, can be much larger due to elastic
effects, compared to classical dendritic growth.

7
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4.4. Channel growth

The growth in a channel of finite width W differs significantly
from the free growth scenario discussed above. Here, the
specific behavior depends, of course, on the choice of boundary
conditions for the displacements and the temperature field at
the channel walls. As shown in figure 7, the bicrystal pattern,
consisting of two β phases with opposite orientations of the
eigenstrain, is growing with a velocity V into the metastable
phase α, which is initially at the undercooling temperature T∞.

To obtain a thermodynamically stable multiphase state
in the tail region, we assume thermal insulation along the
channel walls, i.e. ∂w/∂x = 0. Notice, that in contrast to the
isothermal situation discussed in [36], the temperature w−∞ in
the tail region is not a control parameter and has to be found
self-consistently. Here, we investigate the two-dimensional
plane strain bicrystal growth in a stress-free channel, i.e. the
following elastic boundary conditions are obeyed:

σxx (x = ±W/2) = 0, σxy(x = ±W/2) = 0. (15)

Recently, we also studied channel growth in a confined strip
with fixed boundary conditions for the displacements [37].
Mechanical equilibrium and coherence at the interface lead to
a discontinuous jump in the normal and shear components of
the strain tensor [9]. This causes non-vanishing homogeneous
strains in the β and β ′ phases in the tail region:

ε(β)
xy = ε0

xy, ε(β)
xx = ε0

xx + ν

1 − ν
(ε0

yy + ε0
zz) (16)

and results in the non-zero stress component:

σ (β)
yy = −E

1 − ν2
(ε0

yy + νε0
zz). (17)

Notice that there is also a similar non-vanishing stress
component σzz due to the plain strain geometry. Next, we
calculate the energy excess δF , due to the appearance of a
finite fraction of the new phase λ. It is defined as the difference
between the energy for λ = 0 without any β-phase pair (i.e. far
ahead of the tip) and the energy with an arbitrary but finite
fraction (in the tail region):

δF = −W ( 1
2λF (β)

el + 1
2λF (β ′)

el + (1 − λ)F (α)
el ) − 2γ − γb

+ W
∫ λ

0

(
L(Teq − T (λ′))

Teq

)
dλ′. (18)

Initially, there is only the elastically relaxed but metastable
phase α at the constant temperature w = 0. As soon as
we have a finite phase fraction λ, the energy increases by
elastic and capillary contributions. Since we again assume
the grain boundary energy γb to be much smaller than the
boundary energy γ between α and β or β ′, its contribution
to the energy excess can be neglected. Finally, the integral
appears due to thermal insulation, since an increase of the
amount of β phases leads to the release of latent heat, and
therefore causes an increase of the temperature. Using the
heat conservation condition we find the relation between the
asymptotic temperature and the phase fraction to be

T (λ) = T∞ + λ
L

C
. (19)

Therefore, we obtain for the energy excess as a function of the
asymptotic phase fraction λ

δF(λ) = W L2

CTeq

(
(� − �el)λ − 1

2
λ2 − 2d0

W

)
, (20)

where the parameter �el, as already introduced above
in equation (14), defines the strength of elastic effects.
The maximum of this energy excess, ∂�F(λ)/∂λ = 0,
determines the asymptotic equilibrium fraction in the tail
region, which expresses the thermodynamic balance between
elastic deformation and free energy release due to the phase
transition:

λ = � − �el. (21)

If the fraction λ is in the range 0 < λ < 1, we obtain phase
coexistence in the asymptotic regime far behind the tip. Since
the equilibrium fraction λ and the asymptotic tail temperature
w−∞ coincide (see equation19), this equation describes again
the elastic hysteresis, which is also reflected by its similarity
with equation (14).

Additionally, the growth of the β phases demands that the
energy excess (20) for the equilibrium fraction (21) has to be
positive:

δF(λ) = W L2

CTeq

(
1

2
λ2 − 2d0

W

)
> 0. (22)

This is equivalent to the condition λ > λcrit, where λcrit is given
by

λ2
crit = 4d0

W
. (23)

4.5. Phase field modeling

To solve the full free boundary problem numerically in
the channel geometry, we use a phase field formulation.
For a review of this method see, for example, [21] and
references therein. Phase field modeling techniques have
proved their value not only for solidification, but are
also successfully applied to solid-state transformations (see,
e.g., [38]). Recently, more complex phase field models for
solid–solid transformations have been developed, allowing
us to study, for example, three-dimensional situations with
more than two phases, full anisotropy of elasticity and
surface tension, or simulations beyond the symmetrical model,
where the two phases have different diffusion and elastic
constants [39, 40].

For the purpose of the present paper, we consider
the bicrystal configuration within a symmetrical model of
diffusion-limited solid–solid phase transitions with isotropic
surface tension, which was introduced above. Immediately
taking into account the symmetry along the grain boundary
plane and describing only either the upper or lower half of
the strip, we also avoid the formulation of more complicated
multiphase descriptions.

Formulating an appropriate two-phase model, we first
introduce the phase field ϕ, which will discriminate between
the different phases. We define ϕ = 1 for the metastable initial

8
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phase α and ϕ = 0 for the new phase β or β ′, respectively. We
start from a free energy functional, similar to [41]

F[ϕ,w, ui ] =
∫

V
( fs + fdw + f ) dV , (24)

where fs(∇ϕ) = 3γ ξ(∇ϕ)2/2 is the gradient energy density
and fdw(ϕ) = 6γ ϕ2(1 − ϕ)2/ξ is the double-well potential,
guaranteeing that the free energy functional has two local
minima at ϕ = 0 and 1 corresponding to the two distinct
phases of the system. The form of the double-well potential
and the gradient energy density are chosen such that the phase
field parameter ξ defines the interface width and the parameter
γ corresponds to the interface energy of the sharp interface
description [42]. The free energy density f (ϕ,w, ui ) of our
phase field description has a ϕ-dependent eigenstrain tensor,
such that we obtain the desired bulk free energies equation (6)
and equation (7) for ϕ = 0 and ϕ = 1, respectively:

f (ϕ, ui , w) = E

2(1 + ν)

(
ν

1 − 2ν
(εii − h(ϕ)ε0

ii )
2

+ (εik − h(ϕ)ε0
ik)

2

)
+ L

T − Teq

Teq
h(ϕ), (25)

where we choose the interpolation function h to be h(ϕ) =
1 − ϕ2(3 − 2ϕ). It is the simplest polynomial satisfying the
necessary interpolation conditions h(0) = 1 and h(1) = 0 and
having a vanishing slope at ϕ = 0 and 1, in order not to shift
the bulk states.

The evolution equation of the phase field is given by the
variational expression

∂ϕ

∂ t
= − M

3γ ξ

(
δF

δϕ

)
ui ,w

. (26)

For large values of the mobility M we recover the desired case
of diffusion-limited growth in the sharp interface limit. The
elastodynamic equations are

ρüi = −
(

δF

δui

)
ϕ,w

= ∂σik

∂xk
, (27)

which recover static elasticity for slowly propagating interfaces
in comparison to the sound speed vs ∼ (E/ρ)1/2, with ρ being
the mass density.

For the temperature field we have the usual thermal
diffusion equation with the motion of the phase field or
interface being a source of latent heat:

∂w

∂ t
= Dt∇2w + h′(ϕ)

∂ϕ

∂ t
, (28)

where the prime denotes the derivative with respect to ϕ. This
phase field description is very similar to the model in [43].

Implementing the stress-free boundary conditions equa-
tion (15) means that the displacements have to obey the fol-
lowing set of coupled partial differential equations:

(1 − ν)
∂ux

∂x
= −ν

∂uy

∂y
,

∂uy

∂x
= −∂ux

∂y
, (29)

which can be achieved, for example, by a simple relaxation
method. At the symmetry plane the boundary conditions are

Figure 8. Comparison of growth velocities obtained from Green’s
function method for the free space geometry for φ = 0 (see figure 6)
with the velocities obtained from phase field simulations for the
channel geometry. For this simulation the parameters were set as
follows: �el = 0.3, W/d0 = 100 and W/ξ = 80.

ux = 0, σxy = 0 and, for the specific case γb � γ considered
here, ∂ϕ/∂x = 0 [36].

Performing a series of phase field simulations of the
bicrystal growth in the infinitely compliable channel, we
found the same morphology as in the free space geometry,
as obtained from the boundary integral method described
above. A typical shape of the bicrystal pattern and the
corresponding temperature distribution, obtained from phase
field simulations, is shown in figure 7. The growth velocity as
a function of the driving force �̃ for the free growth (Green’s
function approach) and for the channel geometry (phase field
method), both for a stress-free strip and fixed displacement
boundary conditions is shown in figure 8. Here, we mention
that the asymptotic width of the new phase far behind the tip is
different for the more constrained fixed displacement boundary
conditions scenario, and growth always starts at a driving force
�̃ that is lower for stress-free boundaries, because then the tails
can adjust freely and less elastic energy is stored there [37].

In an intermediate regime of driving forces around �̃ =
0.4, we obtain good quantitative agreement for the growth
velocities of these three different cases shown in figure 8. We
mention that the phase field simulations are rather qualitative
in the present state, as the results are still affected by the finite
interface and channel width. In particular, for convergence
towards the sharp interface results of Green’s function method,
the fraction of β phases should be infinitely small. For more
detailed investigations the generalization of the phase field
model to thin interface asymptotics in the spirit of [44] is
desirable.

5. Summary and conclusion

In this paper we discussed the propagation of dendritic growth
fronts in a context different from solidification. Namely, for the
inverse problem, melting of an alloy, diffusive transport within
the solid phases is slow, and therefore alternative transport
mechanisms can play the dominant role. We discussed
different melting scenarios in homogeneous and heterogeneous
systems with the common feature that, far behind the tip, the
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shape of the melting front becomes parabolic. The presence
of elastic effects can affect the driving force in the case of
partial melting with two advancing fronts—a melting and a
solidifying interface—which is then not only controlled by
the undercooling. There, in particular, strong concentration
gradients ahead of the melting front provoke coherence
stresses that shift the thermodynamic equilibrium and therefore
provide an impurity flux in the melt; consequently, the
front propagation is here much faster than for diffusion in
the solid phase. Another important finding is that grain
boundaries can change the selection mechanisms, since steady-
state growth is possible even without the anisotropy of surface
tension, in contrast to conventional dendritic growth. This
behavior, together with a rotation of the triple junction, is also
qualitatively observed in phase field simulations of peritectic
and eutectic alloys.

Elastic effects naturally become more important during
solid-state transformation, mainly due to density differences
and structural changes, and also here we find dendritic patterns
without surface energy anisotropy. The growth velocity, which
is selected here through the elastic effects, turns out to be
significantly higher than for conventional dendritic growth. We
investigated in particular the growth of a bicrystal during free
growth using Green’s function methods and a phase field model
for the growth in a channel.

In conclusion, we have demonstrated that, in the context of
diffusion-limited dendrite-like transformations other selection
mechanisms than surface tension anisotropy, in particular
heterogeneities and elastic effects, can become effective and
lead to new growth behaviors.
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